INVERSE BOUNDARY-VALUE PROBLEMS OF
HEAT CONDUCTION

O. M, Alifanov UDC 536,24,02

Possible formulations of the problems of determining heat fluxes and temperatures at the
boundary of a solid from known temperatures within the solid are examined. A classifica-
tion of these formulations is offered. Various methods for solving one-dimensional inverse
problems are analyzed.

A characteristic of heat transfer in a solid is a significant smoothing of features in the boundary
functions with distance from the heat-exchange surface into the object. The rate of change of the temper-
ature at a point deep in the interior can turn out to be far lower than the rate of change of the tempera-
ture at the external surface. This physical nature of heat propagation leads to a familiar pathological
singularity in inverse problems: The results are not continuous functions of the input temperature data
{the Hadamard conditions of correctness are violated [1-4, 37]), Since inverse heat-conduction problems
usually involve the processing and interpretation of the results of real thermal experiments, there are
errors in the input data. Inan exact solution of the problem (provided, of course, that an exact solution
is possible), the errors in the input data can be considerably amplified. ¥For this reason, the solution of
inverse heat-conduction problems should be based on those approximate methods which are capable of
suppressing instabilities in the results while providing the desired accuracy. Our purpose inthe present
paper is to briefly review and systematically classify certain methods for solving inverse boundary-value
problems,

We consider a quite general formulation of the one-dimensional inverse problem, We are to deter-
mine the boundary conditions and temperature field in an object in which the heat transfer is described by
a generalized quasilinear heat-conduction equation with a given initial condition and with known tempera-
fures at two points within the object. These points and the boundaries of the object are movable, Their
motion is described by known functions. We thus have
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where the two conditions at the right in {4) are the unknown conditions,

From the physical standpoint this formulation of the problem presupposes distributed heat sources
in the object and the filtration through the object of a gaseous or liquid phase. The motion of the external
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boundaries can be caused by removal of mass, e,g., through ablation, while the motion of the points with
the known temperatures can be governed by thermal shrinkage or extension of the material, This physical
model is encountered in many experiments and incorporates a variety of particular cases,

The formulation in (1)-(4) of this problem is quite general, and to solve it we must put it in a more
concrete form, Here we consider three possible cases,

I. Boundary-Value Formulation of the Inverse

Heat~-Conduction Problem

We assume that an algorithm for solving the corresponding direct problem, f = Au, exists and that
we have found a method for "inverting" it in order to determine the unknown relationship (input data) —
{boundary condtions) [u = R{f}].

1) For linear problems with movable boundaries such formulations can be obtained (and then solved)
on the basis of the theory of thermal potentials, One particular example is the case in which there are no
heat sources or filtration effects in the object, which has a constant thermal diffusivity; this approach was
treated in [5, 6, 28].

2) Algorithms for solving linear inverse heat-conduction problems in the boundary-value formulation
with movable boundaries can be considerably simplified by making use of the principle of expanding the
initial region (x, 7) along the spatial coordinate to a rectangular region {Xjin(r) = X = Xypae, 0= 7 =
Tm/. Thenthe new temperature data at the fixed points in the object, with coordinates Xymax and Xzmaxs
obtained from a solution of the direct heat~conduction problem in the region{X,(r) = x = X3{r), 0 =71 =
Tm), are incorporated, As a result, the original inverse heat-conduction problem in the boundary-value
formulation can be divided into two inverse problems involving determination of fictitious temperatures or
heat fluxes at new boundaries introduced in accordance with some convention, These problems are solved
(e.g., through the use of the integral Duhamel form) in the regions

{lem m<x< X”mm’ 0L v r,} and {X S “m . SE AN

respectively [5]. Finally, the unknown conditions can be found by solving the corresponding direct heat-
conduction problems, since the real boundaries of the object are incorporated in the new regions,

This method of fictitious boundaries suffers from the disadvantage that the accuracy and stability
of the new inverse problems are worse than those of the original problem, because the points of the fic-
titious boundaries are far from the points with the input temperatures.

3) Inverse problems in the boundary-value formulation can be solved by numerical methods through
the use of a variety of difference schemes (explicit and implicit). Inthis case the heat-conduction equa-
tion is integrated along the direction of the time variable [7]. For inverse heat-conduction problems with
movable boundaries, it turns out to be advantageous to first transform the original regions {X;(r) = x =
Xolr), 071 =1p}, {Xolr) = x= X3r), 07 =11y}, {X(r) = x=X4r), 0 =1 = 71} into corresponding
rectangular regions, by introducing new spatial variables of the type [8, 9]

x—X; (1)
X1 (@ — X(1);

£ = i=1,2 3

1I. Inverse Problems in the Cauchy Formulation

We seek a continuation of the solution of the heat-conduction equation from the boundary of the small
region in which the temperature and heat flux are given (Cauchy data) to a larger region, out to the boun-
daries of this region with the unknown conditions. A general characteristic of this formulation of the in-
verse heat-conduction problem is the need to carry out a preliminary caleulation of the heat flux at the
" lines X,(r) and X;(r) in the solution of the direct problem in the region {X,(r) = x = X(r), 0 =7 = pp}.

1) In this case we can also use the method of thermal potentials for linear problems. The continua-
tion of the temperature field for a linear heat-conduction equation can be written as certain infinite series
in terms of arbitrary input functions [10,11] under the assumption that these functions are differentiable
an unlimited number of times).

2) Many algorithms for inverse problems in this formulation, including the original nonlinear case,
{1)-{4), can be found by difference methods through the use of explicit and implicit approximation schemes
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[7,12]. In this case the heat-conduction equation is integrated along the direction of the spatial variable,
toward the boundary with the unknown solution,

I1I. Variational Forms of the Inverse

Heat-Conduction Problem

This case covers a broad class of possible formulations of inverse problems associated with the
seeking of extrema of corresponding functionals. There are two possible cases,

1) We are given a variational formulation of the heat-conduction equation, and we seek a solution of
the problem which leads to a steady-state functional, which is the basis of the variational principle. We
note that, despite the present lack of methods for solving the inverse heat-conduction problem on the basis
of variation principles, this approach holds much promise.

2) The inverse heat-conduction problem specified by the system of differential equations in (1)-{4) is
interpreted as an optimum-control problem. We are to choose the optimum control u {the temperature or
the heat flux at the boundary of the object) such that a target functional is minimized; the role of this func-
tional is played by a discrepancy taken in the norm of the space F which is chosen {this space is usually
Euclidean or Ly):

fAu — fig. — min.
1/3

To solve the inverse heat-conduction problem in the variational formulation we can use, in particular,
the method of least squares [13-16], gradient-type search methods [17, 18], or a trial~and-error method
[20].

Since the original formulation of the inverse boundary-value problem is incorrect in the classical
sense, the various methods used for direct solutions of this problem (unless this incorrectness is taken
into account) turn out to be potentially unstable. Here we refer to these methods as "direct methods,”

In practice, the use of direct methods rests on natural regularizing properties which some method
or computational logarithm may have, to some degree or other, The reason for the natural regularization
of the solutions of the inverse heat-conduction problem lies in the physics of heat propagation in an object,
which results in a regularization of the heating regime [19] at a point in the object at which a temperature
pickup is placed. It is primarily this effect which governs the principle for choosing the time intervals
for calculations from the condition for the suppression of an undesirable "buildup" of the results when
direct algebraic methods are used for solving the integral forms of inverse problems {13, 21-31], This
principle was used in its most explicit form in the initial version of the method of sequential intervals [21],
in which the calculation step used in the determination of step heat-flux functions is chosen such that the
temperature within an infinite plate varies linearly within this time interval. To a certain extent, thermal
regularization is also of assistance in combating instabilities when trial-and-error or least-squares
methods are used [13-16] or in various difference methods for solving the inverse heat-conduction problem
[7,12].

Furthermore, 2 natural regularization of the solutions of the inverse problems can be related to the
"viscous" properties of the calculation schemes based on some algorithm or other. This assertion applies
primarily to numerical methods for solving the inverse heat-conduction problem [7,12, 14].

Accordingly, for each such algorithm based on direct methods we can specify a critical caleulation
step (over which the increment in the Fourier number is chosen on the basis of the considerations of ther-
mal similarity theory) which provides a sufficiently regular behavior of the unknown solutions, The crit-
ical value AFo,yandthe accuracy of the solution of the inverse problem depend on errors in the input data,
so that when direct methods are used particular attention must be paid to the original processing (prepara-
tion) of the raw data,

The critical value AFogy is also governed by the a priori specified order of the approximation of the
unknown function, e.g., in various algebraic schemes of the integral forms of the inverse heat-conduction
problem or in the method of least squares. An effort to improve the accuracy of the approximation, i.e.,
to discern subtler features in the unknown function, by improving the approximation inevitably leads to an
increase in AFocyr, so that the solution may not be improved.
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Among the most commonly used methods for processing the data of thermal experiments are those
based on an algebraic solution of the integral forms of the inverse heat-conduction problem in the boundary-
value formulation, A large number of difference methods have been developed for solving essentially the
same inverse problems, There is accordingly a need for a comparative analysis of these algorithms,
especially since most of them are constructed on the basis of roughly the same principles for approxi-
mating the integral equations, '

Let us examine the problem of determining the bcuhdary conditions for one-dimensional objects
with fixed boundaries and constant thermal properties. »
In this case the general integral form of the inverse heat-conduction problem is
© Fo
Au= [ u@® k(Fo, & dt =[(Fo, 0<t<Fo, )

]
where u(Fo) is the unknown solution (the temperature, heat flux, or auxiliary function).

For steps AFo = (Foy,/m) of fixed magnitude we find, after the approximation of (5), a system of
linear algebraic equations with a lower triangular matrix having the property that the elements along a
diagonal are equal:

. .
AAuE‘E qai,nai:’fn’ = ly 2; ceey ML (6)
i=1
Here ¢; p and 0j can be determined from, e.g.,
T .
. - Loy,
Ppn = 5 K(Fo, &) &%, o, = —"—’———Ef‘iw‘«- .
Vi
We introduce the "spectral conditionality number" ({he product of the spectral norm of the matrix Aa and
the spectral norm of its inverse matrix [32-34]):
C (Ap) = A 145 e
The norms of matrices Ap and Ag‘ are governed by the largest and smallest eigenvalues of the cor-
responding normal matrix,
- sl
|[4Aﬁ == maxs\.AgAA , [Aa2°[ = min k“‘,{‘A

and are found in an iterative manner from the condition for the steady state of the following functional:

. - r e
A= max oA W) oy i oA W)
i o, w p U, u)

The conditionality number C{AA) sets aix upper limit on the ratio of the relative mean square error of the
solution of the system to the relative mean square error of the vector on the right side:

A o,y B
- <Caw

where U, and fy are the "exact" vectors.

For the case in which the input information f is specified exactly, but the matrix elements are per-
turbed, we can write [33]

B _coay BA

Hence the deviation 64 divided by 4, + 64, is bounded by the relative "error" of the matrix Ay mul-
tiplied by the conditionality number.

The quantity C(AA) can thus be interpreted as a measure of the quality of matrix Aa for a compara-
tive amalysis of various algorithms for various values of AFo: The higher C(Aa), the less stable the in~
verse matrix AAl.

In those cases in which the basic result of the analysis is to be a choice of some algorithm or other,

a criterion for the comparison can be the product of the éuclidean norms N = (Y, a2,) 1/2 of the matrices
i.n
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Ap and AR, since the conditionality number satisfies the inequalities

"TnL Y (A) < ClAy < ¥ (A,

where v (Ap) = N(AA)N(AX).

As an example, Fig, 1 shows a plot of ¥ (A AF0) for the cases corresponding to Table 1, When
direct methods are used to solve the inverse heat-conduction problem in the boundary~value formulation
and in the Cauchy formulation, one of the basic questions is that of determining the critical increment of
the Fourier number., We know that an increase in the magnitude of the coefficients of the matrix Ap
along the main diagonal leads to an improvement of the conditionality of the matrix, This improvement
can be achieved by increasing the time step (in Fo), since the kernels of the corresponding integral equa-
tions, K{r — &), have maxima Kmax = K(r = £*) [as £ — 7, we have K(r — £} — 0]. The physical meaning
of this result is that when there is a unit boundary condition at one surface and a zero boundary condition
at the other, the rate of increase of the temperature at a given point begins to decrease after the time
£ =¢&*, Anexceptional case is that of a plate which is thermally insulated on one side; in this case the
known temperature at this side of the plate (or in some vicinity of this side) is used to determine the heat
flux to the other side., In this case the kernel of the integral equation is 2 monotonically increasing func-
tion, which gradually converts into a regular-heating regime,

For other inverse problems we can specify a number AT such that if AFo > AT the elements on the
diagonal of A turn out to be predominant. In particular, if we use a stepped approximation of the boun-
dary condition of the first kind with equal intervals, this situation occurs for a semi-infinite object if
AFo > ~1, while for a plate it occurs if AFo > ~0.8. Here ¢in <¢pp < ... <ogp 0 >i, n=1, 2, ..., m).
This case corresponds to the "limiting" natural thermal regularization of the problem,

We note that if the temperature pickup is placed at the heat-exchange surface at which the boundary
condition is to be found, the maximum values of the coefficients of the matrix Aa always lie on the diag-
onal for any arbitrarily small values of AFo,

The values of AFo obtained in this manner turn outf to be too large in many problems, and this
approach for choosing the step can be recommended only for relatively slow thermal processes which
occur over long time intervals,

As the calculated simulations show, the value of AFo can be reduced considerably in comparison
with that in the case under consideration, until the results of the solution of the inverse heat-conduction
problem become significantly unstable. If the following approach is taken, the critical values of these
steps can be found without "experimentally grouping around for" the instability threshold in the solution
of the methodological examples.

We require that for a stepped approximation of the unknown function the values of AFo satisfy the
condition

AFo>AFq, =Fo* AFo~AFo,,
where Fo* = [a(T —£%/I%] is the Fourier number corresponding to the maximum of K{r — £).

Then when exact (or approximately exact) input information is used, the solution of Eq. (6) becomes
quite smooth,

Table 1 and Fig, 2 show estimates of the critical steps obtained in this manner for several models
and for several methods for solving the inverse heat~conduction problem. Analysis of the stability boun~
daries of the inverse heat-conduction problem shows that under otherwise equal conditions the problem of
reconstructing the temperature of the boundary of the object by a direct method is always stabler than the
analogous problem for the heat flux,

This approach to the choice of the ealculation steps AFo can also be extended to inverse problems
with moving boundaries.

For any algorithm for solving the inverse problem which is regularized in terms of the calculation
step, the value of AFo can be estimated when there are errors in the input data from the condition that the
discrepancy match the magnitude of the errors, For example, the choice of the number of intervals m can
be made from the condition
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Fig. 1. Conditionality numbers for various models of the so-
lution of linear inverse problems for a stepped approximation
of the unknown function (m = 50). The curves are labelled with
the numbers of the models listed in Table 1, I, II, III, IVa)

x; =b; Vb, VIb) x, =0.5b; Ve) xy = 0.05b; VIa) x = 0.95 b,

Fig. 2. Critical values of the steps for model VI of the in-
verse problem,
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where En is the estimate of the mean square error of the input data for time n,

We note that the values of AFogy fall off rapidly as the internal point of the object with the specified
temperature approaches the heat-exchange surface. With identical steps AFo we have the best condition-
ality for the problem of determining the heat flux at the boundary of an object from temperature measure-
ments at this boundary (he problem of transforming boundary conditions) [37]. Accordingly, in the experi-
ments the temperature pickups should be moved as close as possible to the boundary of the object where
the boundary condition is to be determined,

When methods based on the method of least squares or self-similar solutions are used, the role of
the natural regularization parameter can be played by the degree of the approximating polynomial for the
boundary condition being sought for, The "best order" of the approximation should be determined from
the condition

Tm

[ITw, 9—ferd~d,,

o .
where uf is the approximation of "j-th order" of the unknown boundary condition, and 61, is the error of
the input data in '

2 Fo,,
L, (81, = | o®*Fo)ydFo).
(.= "o Faary

To solve inverse problems of optimum control, iterative methods ean be used, in particular, the
methods of steepest descent and of conjugate gradients [18]. Whether these methods can be used success-
fully depends on whether the convergence rate decreases rapidly as successive iterations are carried out;
this decrease makes it possible to avoid the danger that unstable results will appear.

The target functional which determines the degree of deviation of the "experimental” temperature
f(r) from the calculated temperature T, 7) for a given equation u, can be associated with the quadratic
measure of the error:
Tm
Jw= ["f®—T @ oFd @
§ .
The gradient of the functional, J' = (8J/0u), can be calculated either through an immediate differen-
tiation of (7) or through a solution of the auxiliary boundary-value problem which is the adjoint of the
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TABLE 1. Certain Linear Inverse Problems
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original problem (1), (2), &) [18]. Experience in the use of these gradient methods for minimizing (7)
has shown that, if the input data are sufficiently smooth, some 10-15 iterations, beginning with zeroth
approximation, are required to obtain a good approximation of the desired boundary condition u. If there
are errors in the input temperature, then the iterative process is ended in accordance with the discrep-
ancy principle as soon as the condition

Jwh <8,

is satisfied for the first time. In the last iteration, the depth of the step Bi-1 is determined from the so-
Jution of the equation '

JWr—P, pFH = 6%_’
where
P =0T gy ot
tm k-1
(" @rdr
0

Yoa1= = . (1,=0)
[V @i ds

1]

[in the method of steepest descent, all the v; (I =0, 1, ...) vanish], Accordingly, in the solution of the
inverse heat-conduction problem (@s an optimum-control problem) by means of gradient metheds, the role
of the natural regularization parameters is played by the number of the iteration and the size of the step

3 in the last iteration. Iterative methods are used successfully to solve inverse problems in linear and
nonlinear formulations, :

Accordingly, with a correct use of the natural regularization properties which are due to the heat-
propagation process itself and which are incorporated in the calculation schemes, direct methods can be
used successfully under certain conditions to solve the inverse heat-conduction problem, including prob-
lems in which there are errors in the input information,

There are many situations, however, in which direct methods will not be satisfactory, In the first
place, they cannot be used to reconstruct structural details of the unknown boundary conditions if these
conditions are changing rapidly (and it is precisely these problems which have become extremely impor-
tant in a wide variety of experimental studies of heat transfer). ‘Attempts to achieve good results under
these conditions by raising the degree of the approximation of the boundary conditions, by increasing the
number of iterations in the choice of the discrepancy being minimized in terms of the norm of the Sobolev
space, W5, of functions which are differentiable in a generalized manner (instead of L,), do not have the
desired effect, and if there are errors in the input information, the inevitable result is that the solution
"gets out of hand.," ‘

Second, many thermal experiments are so brief that the critical values of the time steps turn out to
be comparable to or even longer than the total duration of the experiment.

in all these cases, an effective solution of the inverse problems can be constructed by means of the
general regularization method of Tikhonov [1,2], The corresponding algorithms for boundary-value for-
mulations of linear and nonlinear problems were worked out in [4-6, 35, 36, 38].

Numerical solutions of nonlinear inverse heat-conduction problems in the Cauchy formulation can
be regularized by introducing a system of regularizing functionals corresponding to spatial layers of the
difference grid (with some boundary conditions specified at 7 = 1)

@ [Ti’ CL] = A”MlTi ——.gi"ZEm + aigi9 i= 1’ 2’ ceey N, (8)
- where M;j is a three-diagonal matrix, governed by the implicit difference scheme chosen (in general, the

coefficients depend on Tip), Ti = [Tj;, Tigs «+.» Tim]T is the unknown temperature vector in the i~th spa~-
tial layer, ai is the regularization parameter, and 2i is the stabilizing functional, We can set

Q =k AT +k, T . k>0, k>0,

which corresponds to a second-order regularization (A and A% are, respectively, the first.and second dif-
ferences on the time grid).
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After the operations involved in minimizing (8) are carried out, we have a regularized system of
nonlinear algebraic equations in each i-th coordinate cross section; from the solution of this system of
equations for a given value of the parameter «j we find T,

The regularization parameters «j can be chosen on the basis of the discrepancy principle of
Morozov [41], with an automatization of the given process in accordance with [42]. According to simu-
lations, in several cases it turns out to be possible to choose the regularized boundary function from
some effective value of the parameter «, from the condition

T — iy, = &,

where T¢ is the temperature at the position of the temperature pickup, found from the regularized ap-
proximation of the boundary function for some value of the parameter &; also, § is the discrepancy level,
which is determined by the error of the input data f. The desired approximation in this problem can also
be determined on the basis of the quasioptimum parameter of Tikhonov and Glasko [44], if one effective
value is chosen for all the regularized systems, This method for regularizing the difference scheme for
the solution of a nonlinear inverse heat-conduction problem in the Cauchy formulation is described in
more detail in [39].

Iterative schemes for solving inverse problems can be regularized by a natural method which fol-
lows directly from the regularization method and which consists of adding an appropriate stabilizer to the
initial target functional, The convergence of the iterative process in this case can be accelerated by com-~
bining generalized Newton methods [43] with the choice of the initial approximationby the conjugate-gradient
method, The algorithms for solving inverse boundary~value problems discussed above frequently turn
out to be effective when combined with each other. For example, the problem can be initially solved by
some direct method, and the result can be adopted as the initial approximation {trial solution) in the
regularized algorithm for a further refinement of this solution.

In summary, we note that the mathematical apparatus presently available for solving inverse heat-
conduction problems has been worked out thoroughly enough that it can be used effectively in a variety of
experimental problems [45,46]. In particular, along with the conjugate heat~transfer problems [47, 48],
the inverse boundary-value problems furnish an opportunity for studying complicated processes involving
transient thermal interactions between solids and surrounding media [49].

NOTATION

A, operator; Aa, matrix approximating the integral operator; Az, transposed matrix; b, plate
thickness; C(T), specific heat at constant volume; C(AA), "conditionality number"; f, input temperature
data; g, auxiliary function (see [6, 31, 36]); m, number of steps in the time interval; ¢, heat flux; Ta,
temperature; u, unknown solution of the integral equation; u, solution of the algebraic system which ap-
proximates the integral equation; X(r}), coordinate of the moving boundary of the object or of the moving
temperature pickup; x, running coordinate; x;, coordinate of fixed temperature pickup; A(T), thermal
conductivity; 7, running time; 7y, final time; ¢(x), initial temperature distribution in the object; ¥(T),
distributed heat sources in the object; AFo, increment in the Fourier number; l+ll, norm.
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