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Possible  formulat ions of the problems of determining heat fluxes and t empera tu res  at the 
boundary of a solid f rom known tempera tu res  within the solid a re  examined. A c lass i f ica -  
tion of these formulat ions is offered.  Various methods for solving one-dimensional  inverse  
problems a re  analyzed.  

A charac te r i s t i c  of heat t r ans f e r  in a solid is a significant smoothing of features  in the boundary 
functions with distance f rom the heat-exchange surface  into the object.  The ra te  of change of the t e m p e r -  
a ture  at a point deep in the in ter ior  can turn  out to be far  lower than the ra te  of change of the t e m p e r a -  
ture  at the external  sur face .  This physical  nature of heat propagation leads to a famil iar  pathological 
s ingular i ty  in inverse  problems : The resul t s  a re  not continuous functions of the input t empera tu re  data 
(the Hadamard conditions of co r r ec tnes s  a re  violated [1-4, 37]). Since inverse  heat-conduction problems 
usually involve the p rocess ing  and in terpre ta t ion  of the resul ts  of rea l  the rmal  experiments ,  there  a re  
e r r o r s  in the input data.  In an exact solution of the problem (provided, of course ,  that an exact solution 
is possible),  the e r r o r s  in the input data can be considerably amplified. For  this reason,  the solution of 
inverse  heat-conduct ion problems should be based on those approximate  methods which a r e  capable of 
suppress ing instabil i t ies in the resu l t s  while providing the des i red  accuracy .  Oar purpose in the present  
paper  is to briefly review and sys temat ica l ly  c lass i fy  cer ta in  methods for solving inverse  boundary-value 
problems.  

We consider  a quite general  formulat ion of the one-dimensional  inverse  problem. We are  to de t e r -  
mine the boundary conditions and t empera tu re  field in an object in which the heat t r ans f e r  is descr ibed by 
a general ized quasi l inear  heat-conduct ion equation with a given initial condition and with known t e m p e r a -  
lures  at two points within the object. These  points and the boundaries of the object a re  movable. Thei r  
motion is descr ibed by known functions. We thus have 
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where the two conditions at the right in (4) are  the unknown conditions. 

F r o m  the physical  standpoint this formulat ion of the problem presupposes  distr ibuted heat sources  
in the object and the f i l t rat ion through the object of a gaseous or liquid phase.  The motion of the external  
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boundaries  can be caused by remova l  of mass ,  e .g , ,  through ablation, while the motion of the points with 
the known t empera tu re s  can be governed by the rmal  shrinkage or extension of the mater ia l .  This  physical  
model is encountered in many exper iments  and incorpora tes  a va r ie ty  of par t icu la r  cases .  

The  formulat ion in (1)- {4) of this p rob lem is quite genera l ,  and to  solve it  we must  put it in a more  
concre te  fo rm.  Here  we consider  t h r ee  possible cases ,  

I .  B o u n d a r y - V a l u e  F o r m u l a t i o n  o f  t h e  I n v e r s e  

H e a t - C o n d u c t i o n  P r o b l e m  

We a s s u m e  that an a lgor i thm for  solving the corresponding d i rec t  problem,  f = Au, exis ts  and that 
we have found a method for  " invert ing" it in o rde r  to  de te rmine  the unknown rela t ionship (input data) 
(boundary condtions) [u = I~ (f)]. 

1) For  l inear  problems with movable boundaries  such formulat ions can be obtained (and then solved) 
on the basis  of the theory  of t he rma l  potentials .  One pa r t i cu la r  example is the case  in which there  a r e  no 
heat sources  or f i l t rat ion effects  in the object,  which has a constant t h e rm a l  diffusivity; this approach was 
t r e a t e d  in [5, 6, 28]. 

2) Algori thms for solving l inear  inverse  heat -conduct ion problems  in the boundary-value formulat ion 
with movable boundaries  can be considerably  simplif ied by making use  of the pr inciple  of expanding the 
init ial  region (x, T) along the spatial  coordinate  to  a rec tangular  region {Xlmin(r) -< x -< X4max, 0 --< r -< 
r m } .  Then the new t empe ra tu r e  data at the fixed points in the object,  with coordinates  X~max and X3max, 
obtained f rom a solution of the d i rec t  heat -conduct ion prob lem in the region{X2(r)  -< x -< X3(r), 0 -- r -< 
Tm}, a r e  incorpora ted .  As a resu l t ,  the original  inverse  heat-conduct ion prob lem in the boundary-value 
formula t ion  can be divided into two inverse  p rob lems  involving de te rmina t ion  of fictit ious t em p e ra tu r e s  or 
heat fluxes at new boundaries  introduced in accordance  with some convention. These  problems a re  solved 
(e.g. ,  through the use of the in tegral  Duhamel form) in the regions 

{x,m, ~ (~) ~< x < x~m, n, 0 < �9 < ~ }  a~a {x~.~ ~ x ~< x , ~ ,  0 < �9 < ~o,}, 

r e spec t ive ly  [5]. Finally, the unknown conditions can be found by solving the corresponding d i rec t  heat-  
conduction prob lems ,  since the r ea l  boundaries  of the object a r e  incorpora ted  in the new regions .  

This method of fictit ious boundaries  suffers  f rom the disadvantage that the accuracy  and stabil i ty 
of the new inverse  problems a r e  worse  than those of the original  problem,  because  the points of the f ic-  
t i t ious boundaries  a r e  far  f rom the points with the input t e m p e r a t u r e s .  

3) Inverse  problems in the boundary-value  formulat ion can be solved by numer ica l  methods through 
the use  of a var ie ty  of d i f ference schemes  (explicit and implici t) .  In this case  the heat-conduct ion equa- 
t ion is integrated along the d i rec t ion  of the t ime var iable  [7]. For  inverse  heat-conduct ion problems with 
movable boundar ies ,  it tu rns  out to be advantageous to  f i r s t  t r a n s f o r m  the original  regions {X 1 {r) -< x <- 
X2(r), 0 -< r --< rrn~, {X2(T) -< x -< X~(r), 0 -< r -< r m i ,  {X3(T) -< x - X4(r), 0 - r -< rm} into corresponding 
rec tangular  regions ,  by introducing new spatial  var iab les  of the type [8, 9] 

~ j=  x--X~(~) , ] = l ,  2, 3. 
Xj+, (~) ~ X(r)j 

I I .  I n v e r s e  P r o b l e m s  i n  t h e  C a u c h y  F o r m u l a t i o n  

We seek  a continuation of the solut ion of the heat-conduct ion equation f rom the boundary of the smal l  
region  in which the t empe ra tu r e  and heat  flux a r e  given (Cauchy data) to  a l a rg e r  region,  out to the boun- 
da r i e s  of this r eg ion  with the unknown conditions.  A genera l  cha rac t e r i s t i c  of this formulat ion of the in- 
v e r s e  heat-conduct ion prob lem is the need to  c a r r y  out a p re l imina ry  calculat ion of the heat flux at the 
lines X2(~) and X3(r) i n t h e  solution of the d i rec t  p rob lem in the region {X2(T) ~ x -< X3(r), 0 -< r - rm} .  

1) In this case  we can a lso  use  the method of t h e rm a l  potentials  for  l inear  p rob lems .  The continua- 
t ion  of the t e m p e r a t u r e  field for  a l inear  heat-conduct ion equation can be wri t ten  as ce r t a in  infinite s e r i e s  
in t e r m s  of a r b i t r a r y  input functions [10, 11 ] (under the assumption that these  functions a r e  different iable  
an unlimited number of t imes) .  

2) Many a lgor i thms for inverse  problems in this formulat ion,  including the original  nonlinear case,  
(1)- (4), can be found by d i f fe rence  methods through the use  of expliei t  and implici t  approximat ion schemes  

822 



[7, 12]. In this  case  the hea t -conduc t ion  equation is in tegra ted  along the d i rec t ion  of the spa t ia l  va r iab le ,  
toward  the boundary  with the unknown solution, 

I I I .  V a r i a t i o n a l  F o r m s  o f  t h e  I n v e r s e  

H e a t - C o n d u c t i o n  P r o b l e m  

This  case  covers  a b road  c lass  of poss ib le  formula t ions  of i nve r se  p rob l ems  assoc ia ted  with the 
seeking of e x t r e m a  of co r respond ing  funetionals .  T h e r e  a r e  two poss ib le  c a s e s .  

1) We a r e  given a va r ia t iona l  fo rmula t ion  of the hea t -conduct ion  equation, and we seek  a solut ion of 
the  p r o b l e m  which leads to a s t e a d y - s t a t e  functional,  which is the bas i s  of the var ia t iona l  pr inc ip le .  We 
note that ,  despi te  the p re sen t  lack of methods for  solving the i n v e r s e  hea t -conduct ion  p rob lem on the bas i s  
of va r i a t ion  p r inc ip les ,  this  approach  holds much p r o m i s e .  

2) The i nve r s e  hea t -conduc t ion  p r o b l e m  specif ied by the s y s t e m  of d i f fe ren t ia l  equations in (1)-(4) is 
i n t e rp re t ed  as  an  op t imum-con t ro l  p rob l em.  We a r e  to choose the op t imum control  u (the t e m p e r a t u r e  or 
the heat  flux at the boundary of the object) such that a t a rge t  functional  is min imized;  the ro le  of this func- 
t ional  is p layed by a d i s c r epancy  t aken  in the no rm of the space  F which is chosen (this space  is usual ly 
Euclidean or L2): 

[JAu - -  f 1t~ - -  min. 

To  solve the i nve r se  hea t -conduct ion  p rob l em in the va r ia t iona l  fo rmula t ion  we can use,  in pa r t i cu la r ,  
the method of leas t  squa re s  [13-16], g r ad i en t - t ype  s ea r ch  methods [17, 18], or a t r i a l - a n d - e r r o r  method 
[20]. 

Since the or iginal  fo rmula t ion  of the i nve r se  boundary-va lue  p r o b l e m  is i n c o r r e c t  in the c l a s s i ca l  
s ense ,  the va r ious  methods used  for  d i r ec t  solutions of this p r o b l e m  (unless this  i n c o r r e c t n e s s  is t aken  
into account) t u rn  out to be potent ia l ly  uns table .  Here  we r e f e r  to  these  methods as  "d i rec t  methods ."  

In p rac t i ce ,  the use  of d i r ec t  methods r e s t s  on natural  r egu la r i z ing  p r o p e r t i e s  which some  method 
or computat ional  logar i thm may  have,  to  s o m e  degree  or other .  The r e a s o n  for  the natural  r egu la r i za t ion  
of the solut ions of the i nve r se  hea t -conduc t ion  p rob l em lies in the phys ics  of heat  p ropaga t ion  in an object,  
which r e su l t s  in a r egu la r i za t ion  of the heating r e g i m e  [19] a t  a point in the object  at which a t e m p e r a t u r e  
pickup is p laced .  It is p r i m a r i l y  this effect  which governs  the p r inc ip le  for  choosing the t ime  in te rva l s  
for  ca lcula t ions  f rom the condition for  the supp re s s ion  of an undes i rab le  "buildup" of the r e su l t s  when 
d i r ec t  a lgeb ra i c  methods a r e  used  for  solving the in tegra l  fo rms  of i n v e r s e  p r o b l e m s  [13, 21-31]. This  
p r inc ip le  was used in i ts  most  explici t  f o r m  in the ini t ial  ve r s ion  of the method of sequent ia l  in te rva l s  [21], 
in which the ca lcula t ion s tep  used in the de t e rmina t ion  of s tep hea t - f lux  functions is chosen such that the 
t e m p e r a t u r e  within an  infinite plate  v a r i e s  l inear ly  within this t i m e  in te rva l .  To  a ce r t a in  extent ,  t h e r m a l  
r egu l a r i z a t i on  is a l so  of a s s i s t a n c e  in combat ing instabi l i t ies  when t r i a l - a n d - e r r o r  or  l e a s t - s q u a r e s  
methods a r e  used [13-16] or  in va r ious  d i f fe rence  methods for  solving the i n v e r s e  hea t -conduct ion  p ro b l em 
[7, 12]. 

F u r t h e r m o r e ,  a na tura l  r egu la r i za t ion  of the solutions of the i nve r se  p r o b l e m s  can be r e l a t ed  to the 
"v i scous"  p r o p e r t i e s  of the ca lcula t ion s c h e m e s  based  on some  a lgor i thm or o ther .  This  a s s e r t i o n  appl ies  
p r i m a r i l y  to numer i ca l  methods for  solving the i nve r se  heat -conduct ion  p r o b l e m  [7, 12, 14]. 

Accordingly ,  for  each such a lgor i thm based  on d i rec t  methods we can spec i fy  a c r i t i ca l  calculat ion 
s tep  (over which the i n c r e m e n t  in the F ou r i e r  number  is chosen on the bas i s  of the cons idera t ions  of t he r -  
mal  s i m i l a r i t y  theory)  which p rov ides  a suff icient ly r egu l a r  behav ior  of the unknown solut ions.  The c r i t -  
ica l  value AFOcr and the a c c u r a c y  of the solut ion of the inve r se  p r o b l e m  depend on e r r o r s  in the input data, 
so  that  when d i rec t  methods a r e  used  pa r t i cu l a r  at tent ion must  be  paid to the or ig inal  p rocess ing  (p repa ra -  
tion) of the r aw  data .  

The c r i t i ca l  value AFOcr is  a l so  governed  by the a p r io r i  specif ied o rde r  of the approx imat ion  of the 
unknown function, e . g . ,  in va r ious  a lgeb ra i c  s c h e m e s  of the iv.tegral f o rms  of the inve r se  hea t -conduct ion  
p r o b l e m  or in the method of leas t  s q u a r e s .  An ef for t  to improve  the a c c u r a c y  of the approximat ion ,  i . e . ,  
to  d i s ce rn  sub t l e r  f ea tu res  in the unknown function, by improving  the app rox ima t ion  inevi tably leads to an 
i n c r e a s e  in ~ F o c r ,  so  that the solut ion may  not be  improved .  
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Among the most commonly used methods for processing the data of thermal  experiments a re  those 
based on an algebraic solution of the integral forms of the inverse heat-conduction problem in the boundary- 
value formulation. A large number of difference methods have been developed for solving essentially the 
same inverse problems. There  is accordingly a need for a comparative analysis of these algorithms, 
especially since most of them are  constructed on the basis of roughly the same principles for approxi- 
mating the integral equations. 

Let us examine the problem of determining the boundary conditions for one-dimensional objects 
with fixed boundaries and constant thermal  proper t ies .  

In this case the general  integral form of the inverse heat-conduction problem is 
Fo 

Au -~. ~ u (~) k (Fo, ~) d~ = f (Fo), 0 < ~ ~< Fore, (5) 
0 

where u(Fo) is the unknown solution (the temperature, heat flux, or auxiliary function), 

For steps AFo = (Fom/m) of fixed magnitude we find, af ter  the approximation of (5), a system of 
linear algebraic equations with a lower tr iangular matrix having the property that the elements along a 
diagonal are equal: 

= f . .  , = I. 2 . . . . .  m. (s)  

Here ~i,n and ui can be determined from, e .g . ,  

~ , . =  J K(Fo, ~)d~, u~- 2 " 

We introduce the "spectral  conditionality number" (the product  of the spec t ra l  norm of the matr ix  AA and 
the spectral  norm of its inverse matr ix [32-34]): 

c t}, ,)  ='nAA.ItA ' . 
The norms of matr ices AA and A~ i a re  governed by the largest  and smallest  eigenvatues of the cor -  

responding normal matrix,  

and are  found in an i terat ive manner from the condition for the steady state of the following functional: 

; (u, u) ; (u, u) 

The conditionality number C (AA) sets an upper limit on the rat io  of the relat ive mean square e r r o r  of the 
solution of the system to the relative mean square e r r o r  of the vector on the right side: 

..<c(&) 

where tl 0 and f0 a re  the "exact" vectors .  

For  the case in which the input information f is specified exactly, but the matr ix elements a re  per -  
turbed, we can write [33] 

t}~I ~ C(A,,) ]ISA,,~... 

Hence the deviation 5u divided by u0 + 5u, is bounded by the relative "error" of the matrix AA mul- 
tiplied by the conditionality number. 

The quantity C (AA) can thus be interpreted as a measure of the quality of matrix AA for a compara- 
tive analysis of various algorithms for various values of AFo: The higher C(AA), the less stable the in- 

verse matrix A~. 

In those cases in which the basic result of the analysis is to be a choice of some algorithm or other, 

a cr i te r ion for the comparison can be the product of the euclidean norms N = ( Z  a~..) `/~" of the matr ices 
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A& and A~, i, since the conditionality number satisfies the inequalities 

I ? (A~).~ C (A~) ~ ? (A~), 
rn  

where  7 (AA) = N(AA)N(A~). 

As an  example ,  Fig.  1 shows a plot of 7 (A&AFo) for  the ca se s  cor responding  to Tab le  1. When 
d i r ec t  methods a r e  used to solve the  i n v e r s e  heat -conduct ion  p r o b l e m  in the boundary-va lue  fo rmula t ion  
and in the Cauchy formulat ion,  one of the bas ic  quest ions is that  of de te rmin ing  the c r i t i ca l  i nc remen t  of 
the Fou r i e r  number .  We know that  an i n c r e a s e  in the magnitude of the coeff icients  of the m a t r i x  AA 
along the main  diagonal  leads to an  i m p r o v e m e n t  of the conditionali ty of the ma t r ix .  This  i m p r o v e m e n t  
can be achieved by inc reas ing  the t ime  s tep (in Fo), s ince the ke rne l s  of the cor responding  in tegra l  equa- 
t ions ,  K(r - -  ~), have m a x i m a  Krnax = K(r - -  ~*) [as ~ ~ r ,  we have K(r - -  ~) ~ 0]. The phys ica l  meaning 
of this  r e su l t  is  that  when the re  is  a unit boundary  condition at  one su r f ace  and a ze ro  boundary  condition 
a t  the other ,  the r a t e  of i n c r e a s e  of the t e m p e r a t u r e  at a g iven point begins  to  d e c r e a s e  a f t e r  the t i m e  

= ~ *. An except ional  case  is that  of a plate  which is t h e r m a l l y  insula ted on one side;  in this case  the 
known t e m p e r a t u r e  at this side of the plate  (or in some vicinity of this side) is  used to d e t e r m i n e  the heat  
flux to  the other  s ide .  In this case  the ke rne l  of the in tegra l  equat ion is  a monotonically- increasing" func-  
t ion, which gradual ly  conver t s  into a r e g u l a r - h e a t i n g  r eg ime .  

F o r  other  i nve r s e  p rob l em s  we can  speci fy  a number  A~"5 such that  if  &Fo > &F-'5 the e lements  on the 
diagonal  of AA turn  out to be p redominan t .  In pa r t i cu la r ,  if we use  a s tepped approx imat ion  of the boun- 
da ry  condition of the f i r s t  kind with equal in te rva l s ,  this s i tuat ion occurs  for a semi- in f in i te  object if  
~ F o >  ~1, while for  a plate  it occurs  i f A F o >  ~0.8. H e r e ~ l n  <~~ < . . .  <~nn  ( n > i ,  n = l ,  2 . . . . .  m) .  
This  case  co r r e sponds  to  the " l imit ing" na tura l  t h e r m a l  r egu la r i za t ion  of the p rob lem.  

We note that  i f  the t e m p e r a t u r e  pickup is  p laced at the hea t -exchange  su r face  at which the boundary  
condition is to be  found, the m a x i m u m  values  of the coefficients  of the m a t r i x  AA always tie on the diag-  
onal for  any a r b i t r a r i l y  smal l  values of AFo. 

The  values  of &Fo obtained in this manner  t u rn  out to be too l a rge  in many  p r o b l e m s ,  and this  
app roach  for  choosing the s tep can be r e c o m m e n d e d  only for  r e l a t ive ly  s low t h e r m a l  p r o c e s s e s  which 
occur  ove r  long t i m e  in te rva l s .  

As the calcula ted s imula t ions  show, the value of AFo can be reduced  cons iderab ly  in c o m p a r i s o n  
with that  in the case  under  cons idera t ion ,  until  the r e su l t s  of the solut ion of the i nve r se  hea t -conduct ion  
p r o b l e m  b e c o m e  signif icant ly  uns table .  If  the following approach  is taken,  the c r i t i ca l  values of these  
s teps  can be  found without "expe r imen ta l ly  grouping around for"  the ins tabi l i ty  th resho ld  in the solut ion 
of the methodological  examples .  

We r e q u i r e  that for a s tepped approx imat ion  of the unknown function the values  of &Fo sat isfy  the 
condition 

AFo2>AFocr =Fo*,  AFo~AFocr ,  

where  Fo* = fa (t- - ~ * ) / l  z] is  the F ou r i e r  number  cor responding  to the m a x i m u m  of K(r - -  ~). 

Then when exact  (or app rox ima te ly  exact) input in format ion  is used,  the  solut ion of Eq. (6) becomes  
quite smooth .  

Table  1 and Fig.  2 show e s t i m a t e s  of the c r i t i ca l  s teps  obtained in this m a n n e r  for  s e v e r a l  models  
and for  s e v e r a l  methods for  solving the i nve r se  hea t -conduct ion  p rob lem.  Analys i s  of the s tabi l i ty  boun- 
da r i e s  of the i nve r s e  heat -conduct ion  p r o b l e m  shows that  under  o therwise  equal  conditions the p r o b l e m  of 
r econs t ruc t ing  the t e m p e r a t u r e  of the boundary of the object  by a d i r ec t  method is  a lways  s t ab l e r  than the 
analogous p rob l e m  for  the heat flux. 

This  approach  to the choice of the calculat ion s teps  &Fo can a l so  be extended to inverse  p rob lems  
with moving boundar ies .  

Fo r  any a lgor i thm for  solving the i nve r se  p rob l em which is  r egu l a r i zed  in t e r m s  of the ca lcula t ion  
s tep,  the value of &Fo can be e s t ima ted  when the re  a r e  e r r o r s  in the input data f r o m  the condition that  the 
d i sc repancy  match  the magnitude of the e r r o r s .  For  example ,  the choice of the number  of in te rva l s  m can 
be made f rom the condition 
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Fig. 1. Conditionality numbers  for  var ious models of the so-  
lution of l inear  inverse  problems for  a stepped approximat ion 
of the unknown function (m = 50). The curves  a r e  labelled with 
the numbers  of the models l is ted in Table  1. I, II, III, IVa) 
x l = b ;  Vb, VIb) x l = 0 . 5 b ;  Vc) x 1 = 0 . 0 5 b ;  VIa) xl = 0 . 9 5 b .  

Fig. 2. Cr i t ica l  values of the steps for  model VI of the in- 
ve r se  problem.  

s ] 
.=l (;~ 

where  ~n is the es t imate  of the mean  square  e r r o r  of the input data for  t ime n. 

We note that the values of AFocr  fall off rapidly as the in ternal  point of the object with the specif ied 
t e m p e r a t u r e  approaches the heat -exchange sur face .  With identical  steps &Fo we have the best  condition- 
al i ty for  the problem of determining the heat flux at the boundary of an object f rom t empera tu re  m eas u re -  
ments at this boundary (the prob lem of t r ans fo rming  boundary conditions) [37]. Accordingly,  in the exper i -  
ments the t e m p e r a t u r e  pickups should be moved as close as possible to the boundary of the object where 
the boundary condition is to  be de te rmined .  

When methods based on the method of least  squares  or s e l f - s im i l a r  solutions a r e  used, the ro le  of 
the natural  regula r iza t ion  p a r a m e t e r  can be played by the degree  of the approximating polynomial for  the 
boundary condition being sought for .  The "best  o rder"  of the approximat ion should be de termined  f rom 
the condition 

"frn 

0 

where uJ is the approximat ion of " j - th  order"  of the unknown boundary condition, and 5L 2 is the e r r o r  of 
the input data in 

L, (8~. Fo~ = S a'(Fo)dFo). 
0 

To solve inverse  problems of optimum control ,  i t e ra t ive  methods can be used, in par t icu lar ,  the 
methods of s teepes t  descent  and of conjugate gradients  [18]. Whether  these  methods can be used success -  
fully depends on whether  the convergence ra te  d ec r ea se s  rapidly as success ive  i terat ions a re  ca r r i ed  out; 
this  dec rease  makes it possible to avoid the danger  that unstable resu l t s  will appear .  

The ta rge t  functional which de te rmines  the degree  of deviation of the "exper imenta l"  t empera tu re  
f(r ) f rom the calculated t empe ra tu r e  T (u, T) for  a given equation u, can be associa ted with the quadrat ic  
measure  of the e r r o r :  

J (u) = [ If ('0 - -  T (u, "0] ~ dx. (7) 
0 

The gradient  of the functional, J' = (~J/Ou), can be calculated e i ther  through an immedia te  d i f feren-  
t ia t ion of (7) or through a solution of the auxi l iary  boundary-value problem which is the adjoint of the 
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T A B L E  I. Certain Linear Inverse Problems 

NO Model Reference aFocr 

t 

III 

IV 

V 

VI 

Semi-inf ini te  object  

q - - ?  ~_ 

0 x l x . . *  oo 

Plate (function g) 

x 
xx = b  

2xll,' AFojr 
~ - -  X .  X 

X(n--p)i(D* 
21 / AFoxt(n--p)  ap=i  

Plate 

X1 x 

qhn -- ~-o i--o 

[191--Eq.(19), 
Ch.5 

[221--Eq. (S),(9) 

[61--Eq.(6),(I4} 

~ ] 5 E q .  (24), 

[22]--gq.(21), 
(22) 

xx 2 " 1 xt p=t 

Plate " I [19]---Eq. (28), 
T - - ?  . _ q ~ 0  --)- C k 4  

[0 x~ I b x ' 

(2i--1)-- 

F (2 i - t )+~-  

+o* 1217 ~ )  p=,-~ 

Semi- inf ini te  object  

X1 X-+ ~o 

~Ptn q) I ] p = i - 1  
= [2FAFs jp=~ 

.Plate (function g) 

T - - ?  [ q=O 

0 [b x 

qJl~ ~ (I)* b 

2]/ AFob(n~p) Ap=i  

I T - '  To=o 
~0 x 1 / x 

b 

�9 = 21 /  AFob(n--p) 

[ 2FAVor(n--p) p=~-, 

cr AFoxt ~ 0,4-0,5 

~ 19l--~g (6), 
h, 4 

[31 l--Eq. 0 3) 

9]--Eq. (47), 
4 

[so] -Eq.  (7) 

cs 
AFox~ =0 ,17  

cr f xt \*-, =~ 

see Fig. 2 
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i s  sa t i s f ied  for the f i r s t  t i m e .  
lution of the equation 

or iginal  p rob l em (1), (2), (4) [18]. Exper ience  in the use  of these  gradient  methods for  minimizing (7) 
has  shown that,  if the input data a r e  suff icient ly smooth,  some  10-15 i te ra t ions ,  beginning with zeroth 
approximat ion ,  a r e  requi red  to obtain a good approx imat ion  of the des i r ed  boundary condition u. If t he re  
a r e  e r r o r s  in the input t e m p e r a t u r e ,  then the i t e ra t ive  p r o c e s s  is ended in accordance  with the d i s c r e p -  
ancy pr inciple  as soon as the condition 

d (u k) < ~ ,  

In the las t  i te ra t ion,  the depth of the s tep  /3k_ 1 is de te rmined  f r o m  the so-  

J ( u k - 1 -  ~A-lP k-l) = ~L, 

where  
pk-1 = j,~-i + 7k_lp~_2, 

Tm tk 1 
S [d - (~)12 dr 

o (7o = O) 
~ k - 1  : Trn 

[j,k_, (~)p d~ 
0 

[in the method of s t eepes t  descent ,  a l l  the Tl (l = 0, 1 . . . .  ) vanish].  Accordingly,  in the solution of the 
i n v e r s e  heat -conduct ion p r o b l e m  (as an  op t imum-con t ro l  p rob lem)  by means  of gradient  methods,  the ro le  
of the natural  r egu la r i za t ion  p a r a m e t e r s  is p layed by the number  of the i t e ra t ion  and the s ize  of the s tep  
t3 in the las t  i te ra t ion .  I t e ra t ive  methods a r e  used success fu l ly  to solve i nve r se  p rob l ems  in l inear  and 
nonl inear  formula t ions .  

Accordingly,  with a c o r r e c t  use  of the natura l  r egu la r i za t ion  p rope r t i e s  which a r e  due to the heat-  
p ropaga t ion  p r o c e s s  i t se l f  and which a r e  incorpora ted  in the calcula t ion s c h e m e s ,  d i rec t  methods can be 
used  success fu l ly  under  ce r t a in  conditions to solve the i nve r se  heat -conduct ion p rob lem,  including p rob -  
l ems  in which the re  a r e  e r r o r s  in the input informat ion .  

T h e r e  a r e  many si tuat ions,  however ,  in which d i rec t  methods will not be sa t i s f ac to ry .  In the f i r s t  
p lace ,  they cannot be used to r econs t ruc t  s t r uc tu r a l  deta i ls  of the unknown boundary conditions if  these  
conditions a r e  changing rap id ly  (and it is p r e c i s e l y  these  p rob l ems  which have become  ex t r eme ly  i m p o r -  
tant  in a wide va r i e ty  of expe r imen ta l  s tudies of heat  t r a n s f e r ) .  A t t e m p t s  to  achieve  good r e su l t s  under  
these  conditions by ra i s ing  the degree  of the approx imat ion  of the boundary  conditions, by inc reas ing  the 
number  of i t e ra t ions  in the choice of the d i sc repancy  being minimized  in t e r m s  of the n o r m  of the Sobolev 
space ,  W2 n, of functions which a r e  d i f ferent iable  in a genera l ized  manner  (instead of L2) , do not have the 
des i r ed  effect,  and if t he re  a r e  e r r o r s  in the input informat ion ,  the inevi table  r e su l t  is that  the solution 
"gets  out of hand." 

Second, many t h e r m a l  expe r imen t s  a r e  so  b r i e f  that  the c r i t i ca l  values  of the t ime  s teps  tu rn  out to 
be  comparab le  to  or  even longer  than the total  dura t ion  of the expe r imen t .  

In al l  these  eases ,  an  effect ive solut ion of the i nve r se  p rob l ems  can be cons t ruc ted  by means  of the 
genera l  r egu la r i za t ion  method of Tikhonov [1, 2]. The cor responding  a lgor i thms  for  boundary-va lue  f o r -  
mulat ions  of l inear  and nonlinear p rob l em s  were  worked out in [4-6, 35, 36, 38]. 

Numer ica l  solutions of nonlinear i nve r se  hea t -conduct ion  p rob l ems  in the Cauchy formula t ion  can 
be  r egu la r i zed  by introducing a s y s t e m  of r egu la r i z ing  functionals cor responding  to spa t ia l  l aye r s  of the 
d i f fe rence  gr id  (with some  boundary conditions speci f ied  a t  r = Tm) 

[T i ,  cr = ! ! M I T  ~ - -  gilI~.~ + a i~ ,  i = I, 2 . . . . .  n, (8) 

�9 where  M i is a t h ree -d iagona l  ma t r ix ,  governed �9 by the impl ic i t  d i f fe rence  s cheme  chosen (in genera l ,  the 
T a coeff icients  depend on Tin), T i = [Til, Ti2 . . . . .  T im]  is  the unknown t e m p e r  tu re  vec to r  in the i - th  spa -  

t ia l  l aye r ,  a i  is the r egu la r i za t ion  p a r a m e t e r ,  and ~2i is the s tabi l iz ing functional.  We can  set  

P.~ = k~ [iaTill~ + k~ IfA~LII~,,, /~ > o, k_. > O, 

which co r re sponds  to a s e c o n d - o r d e r  r egu la r i za t ion  (A and A 2 a r e ,  r e spec t ive ly ,  the f i r s t a n d  second dif -  
f e rences  on the t ime  gr id) .  
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After the operations involved in minimizing (8) are carried out, we have a regularized system of 
nonlinear algebraic equations in each i-th coordinate cross section; from the solution of this system of 

equations for a given value of the parameter ~i we find T~i. 

The regularization parameters ~i can be chosen on the basis of the discrepancy principle of 
Morozov [41], with an automatization of the given process in accordance with [42]. According to simu- 
lations, in several cases it turns out to be possible to choose the regularized boundary- function from 
some effective value of the parameter ~, from the condition 

ii T ~ -  [6',~ = 6', 

where T ~ is the temperature at the position of the temperature pickup, found from the regularized ap- 
proximation of' the boundary function for some value of the parameter ~; also, 5 is the discrepancy level, 
which is determined by the error of the input data f. The desired approximation in this problem can also 
be determined on the basis of the quasioptimum parameter of Tildaonov and Glasko [44], if one effective 
value is chosen for all the regularized systems. This method for regularizing the difference scheme for 
the solution of a nonlinear inverse heat-eonduetion problem in the Cauohy formulation is described in 
more detail in [39]. 

Iterative schemes for solving inverse problems can be regularized by a natural method which fol- 
lows directly from the regularization method and which consists of adding an appropriate stabilizer to the 
initial target filnctional. The convergence of the iterative process in this case can be accelerated by com- 
bining generalized Newton methods [43] with the choice of the initial approximationby the conjugate-gradient 
method. The algorithms for solving inverse boundary-value problems discussed above frequently turn 
out to be effective when combined with each other. For example, the problem can be initially solved by 
some direct method, and the result can be adopted as the initial approximation {trial solution) in the 
regularized algorithm for a further refinement of this solution. 

In summary, we note that the mathematical apparatus presently available for solving inverse heat- 
conduction problems has been worked out thoroughly enough that it can be used effectively in a variety of 
experimental problems [45, 46]. In particular, along with the conjugate heat-transfer problems [47, 48], 
the inverse boundary-value problems furnish an opportunity for studying complicated processes involving 
transient thermal interactions between solids and surrounding media [49]. 

NOTATION 

A, operator; AA, matrix approximating the integral operator; A T, transposed matrix; b, plate 
th ickness ;  C(T), specif ic  heat at constant volume; C(AA), "conditionality number" ;  f, input t e m p e r a t u r e  
data; g, auxi l iary  function (see [6, 31,36]); m, number of steps in the t ime  interval ;  q, heat flux; TA, 
t empe ra tu r e ;  u, unknown solution of the in tegral  equation; t~, solution of the a lgebra ic  sys tem which ap- 
proximates  the in tegral  equation; X(r), coordinate  of the moving boundary of the object or of the moving 
t e m p e r a t u r e  pickup; x, running coordinate;  xl, coordinate of fixed t e m p e r a t u r e  pickup; x {T), t he rma l  
conductivity; r ,  running t ime;  rm,  final t ime;  .~(x), initial t e m p e r a t u r e  d is t r ibut ion  in the object; ~(T), 
d is t r ibuted heat sources  in the object; AFo, inc rement  in the Four i e r  number;  It �9 N, norm.  

1. 
2. 
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